US 2008/0046393 Al

[0018] Embodiments of the present invention provide a
solution to the interactive analysis of attack graphs. First, the
embodiments may represent in a relational model the nec-
essary inputs including network configuration and domain
knowledge. The embodiments may then generate attack
graph(s) using relational queries, which can either be mate-
rialized as relations or simply left as the definition of
relational views. The latter case is especially suitable for
large networks where materializing the complete attack
graph may be prohibitive. Second, analyses of attack graphs
may be realized as relational queries. The interactive analy-
sis of attack graphs should now be possible, because admin-
istrators can immediately pose new queries based on the
outcome of previous analyses. Finally, as a side-benefit, the
performance of an analysis can usually be transparently
improved by the mature optimization techniques available in
most relational databases.

[0019] Attack graphs represent the knowledge about the
inter-dependency between vulnerabilities. Model checking
was first used to decide whether a goal state is reachable
from the initial state and later used to enumerate all possible
sequences of attacks connecting the two states. However, the
number of attack sequences is potentially exponential, lead-
ing to high complexity. A more compact representation
based on the monotonicily assumption (that is, an attacker
never relinquishes an obtained capability) may be used. The
new representation may keep exactly one vertex for each
exploit or condition, leading to attack graphs of polynomial
size.

[0020] Analyses of attack graphs have been used for
different purposes in defending against network intrusions.
Minimal critical attack set analysis finds a minimal subset of
attacks whose removal prevents attackers from reaching a
goal state. However, the attacks in a minimal critical attack
set are not necessarily independent, and a consequence may
not be removed without removing its causes. This observa-
tion leads to the minimum-cost hardening solution, which is
a minimal set of independent security conditions. Finding
the minimum set of attacks leading to given goals may be
computationally infeasible, whereas a minimal set may be
found in polynomial time. All attacks involved in at least one
of such minimal sets of attacks may also be enumerated.
Finally, in exploit-centric alert correlation, attack graphs
may assist the correlation of isolated intrusion alerts.

[0021] The afore-mentioned analysis of attack graphs is
largely based on proprietary algorithms. However, as men-
tioned earlier, this may delay a new analysis and make
interactive analysis impossible. The disclosed embodiments
remove this limitation and enable interactive analysis of
attack graphs. On the other hand, decision support systems,
such as on-line analytical processing (OLAP) [7], have been
used for interactive analysis of data for a long time. How-
ever, an analyst there is usually interested in generalized data
and statistical patterns, which is different from the analysis
of attack graphs.

[0022] Attack graphs are usually visualized as a directed
graph having two type of vertices, exploits and security
conditions (or simply conditions). An exploit is a triple (h,,
h,, v), where h, and h, are two connected hosts and v is a
vulnerability on the destination host h,. A security condition
is a pair (h, ¢) indicating the host h satisfies a condition ¢

Feb. 21, 2008

relevant to security (both exploits and conditions may
involve more hosts, for which the model can be easily
extended).

[0023] An attack graph preferably has two types of edges
denoting the inter-dependency between exploits and condi-
tions. First, a require relation is a directed edge pointing
from a condition to an exploit. The edge means the exploit
cannot be executed unless the condition is satisfied. Second,
a imply relation points from an exploit to a condition. This
means executing the exploit should satisfy the condition.
Notice that there is usually no edge between exploits (or
conditions). Example 1 illustrates the concept of attack
graph.

Example 1

[0024] FIG. 1A depicts a running example of an attack
graph with the exploits shown as ovals. FIG. 1B illustrates
an example of a simplified version the attack graph with the
exploits shown as triplets. In FIG. 1B, x denotes the exist-
ence of a vulnerability SADMIND BUFFER OVERFLOW
(Nessus ID 11841), y the user privilege, and A the exploi-
tation of that vulnerability. The attack graph shows an
attacker having user privilege on host 3 may exploit the
vulnerability on hosts 1 and 2 and obtain user privilege on
the hosts.

[0025] Two important aspects of attack graphs are as
follows. First, the require relation should always be con-
junctive whereas the imply relation should always be dis-
junctive. More specifically, an exploit should not be realized
until all of its required conditions have been satisfied,
whereas a condition may be satisfied by any one of the
realized exploits. Second, the conditions may be further
classified as initial conditions (the conditions not implied by
any exploit) and intermediate conditions. An initial condi-
tion may be independently disabled to harden a network,
whereas an intermediate condition usually cannot be [12].

[0026] A Relational Model for Attack Graphs. In the
relational model, the complete attack graph may be left as
the result of a relational query (i.e. not explicitly represented
in our model). The result to the query may be materialized,
or the query can simply be left as a view. Such flexibility
may be important to large networks where materializing the
complete attack graph may be prohibitive. Two inputs may
be modeled, the network configuration (vulnerabilities and
connectivity of the network) and the domain knowledge (the
interdependency between exploits and conditions), as illus-
trated in Example 2. The domain knowledge may be avail-
able in tools like the Topological Vulnerability Analysis
(TVA) system developed at George Mason University,
which covers more than 37,000 vulnerabilities taken from
24 information sources including X-Force, Bugtraq, CVE,
CERT, Nessus, and Snort [8]. On the other hand, the
configuration information including vulnerabilities and con-
nectivity may be easily obtained with tools such as the
Nessus scanner [5].

Example 2

[0027] FIG. 2 shows an example of a network configura-
tion and domain knowledge used in generating the attack
graph in Example 1. The left-hand side of FIG. 2 shows the
connectivity between three hosts, and initially hosts 1 and 2
satisfy the condition x and host 3 satisfies y. The right-hand



